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Surfaces eroded by off-normal incidence ion bombardment often have a rippled topography, and this is
undesirable in a number of applications. Sample rotation during sputtering inhibits or prevents surface rough-
ening and is widely used in precision depth profiling. In this paper, I study the surface roughening of a sample
that is simultaneously rotated and sputtered in the limit in which viscous flow can be neglected. I find that the
structure of the surface depends on the sign of a parameter characterizing the curvature dependence of the
sputter yield,mav. Formav.0, the asymptotic scaling behavior of the surface is in the same universality class
as the Kardar-Parisi-Zhang equation in 211 dimensions. At long times the surface is composed of a patchwork
of paraboloids of revolution whose mean lateral dimension grows algebraically in time, a topography quite
reminiscent of those observed experimentally. In contrast, the interface has a chaotic cellular structure de-
scribed by the isotropic Kuramoto-Sivashinsky equation ifmav,0. The mean cell width is constant in time in
this case.@S1063-651X~96!08812-5#

PACS number~s!: 64.60.Ht, 61.80.Az, 79.20.Rf

Off-normal incidence ion bombardment often produces
periodic height modulations on the surface of an amorphous
solid @1–4#. For incidence anglesu less than a critical angle
uc from the normal, the wave vector of the modulations is
parallel to the component of the ion beam in the surface
plane. The wave vector is perpendicular to this component
for incidence angles close to grazing. It is now well estab-
lished that if the incident ions do not react chemically with
the solid, these surface modulations form as a result of the
curvature dependence of the sputter yield@1–3,5–7#.

In practice, the ripples are not completely coherent be-
cause of the effects of shot noise. The topography is there-
fore disordered at long wavelengths. Moreover, as the ampli-
tude of the ripples becomes appreciable, nonlinearities
become increasingly important. Recently, considerable effort
has been devoted to understanding the scaling behavior of
the surface, which is influenced by both the noise and the
nonlinearities@8–10#. The dynamics of the interface are gov-
erned by the noisy, anisotropic Kuramoto-Sivashinsky equa-
tion, which displays several different types of complex scal-
ing behavior whose precise nature remains to be elucidated.

Formation of surface ripples is problematic in a variety of
applications, including secondary ion mass spectroscopy
~SIMS!, Auger electron spectroscopy~AES!, and ion mill-
ing. SIMS is one of the most widely used techniques for
dopant profiling of semiconductors, while AES is an impor-
tant tool in the structural characterization of multilayers. In a
typical SIMS or AES apparatus, the primary ions are inci-
dent at an angleuÞ0. Thus, as sputtering proceeds, ripples
can be formed, and this leads to rapid degradation of the
depth resolution. This is particularly problematic when SIMS
or AES is used in conjunction with ion sputtering for depth
profiling of modern thin film materials and devices@11#.

Zalar first demonstrated that this problem can be over-
come by rotating the sample about its surface normal as the
depth profiling proceeds@12#. Zalar rotation has subse-
quently been used by many other groups, who found that in
many cases, the surface remains remarkably smooth as the
solid is eroded@13#. Moreover, Cirlin and co-workers have

observed that if the sample is at first stationary and ripples
are formed, subsequent rotation during erosion can lead to
the production of a smooth surface@14#. Sample rotation
does not always suppress surface roughening, however. In
some instances, the sample roughens while it is simulta-
neously eroded and rotated, albeit at a slower rate than it
does when it is eroded without being rotated@14,15#.

Although Zalar rotation is widely used in sample analysis
and is even applied in commercially available depth profiling
systems, an understanding of its effectiveness has been lack-
ing. Recently, Bradley and Cirlin advanced a theory that ex-
plains why sample rotation reduces or eliminates surface
roughening during depth profiling@16#. When the sample is
rotated, the smoothing effects of viscous flow and surface
self-diffusion can prevail over the roughening effect of the
curvature-dependent sputter yield and generate a smooth sur-
face. The theory also accounts for the observations of Cirlin
et al. @14# mentioned above.

The object of the present paper is to elucidate the nature
of the surface roughening that sometimes occurs even when
the sample is rotated. According to Bradley and Cirlin’s
theory, the surface roughens during concurrent ion sputtering
and sample rotation if the viscosity of the sample is too high.
We will study the surface roughening in this high-viscosity
regime. For simplicity, the viscosity will be taken to be large
enough that the effects of viscous flow can be neglected al-
together. I find that the structure of the surface depends on
the sign of a parameter characterizing the curvature depen-
dence of the sputter yield,mav. If mav,0, the interface has a
chaotic cellular structure which is described by the much-
studied isotropic Kuramoto-Sivashinsky ~KS! equation
@17,18#. We can therefore simply refer to the existing litera-
ture to learn a great deal about the nature of the surface
roughening in this case—for example, the mean cell width is
constant in time. Whenmav is positive, on the other hand, the
long-time, long-wavelength scaling behavior of the surface is
the same as that of the Kardar-Parisi-Zhang~KPZ! equation
in 211 dimensions@19,20#. Once we have arrived at this
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conclusion, the vast literature on the KPZ equation allows us
to describe the scaling properties of the interface formav.0
quite satisfactorily. At long times, the surface is composed of
a patchwork of paraboloids of revolution whose mean lateral
dimensions grow ast1/z whent is large. The dynamic critical
exponentz has an asymptotic value of roughly 1.7. However,
if the surface is very rough initially, there is a long-lived
transient regime in whichz52. This prediction is in quali-
tative agreement with the experimental results of Barna,
Barna, and Zalar@21#.

Let us begin by considering a flat surface of an amor-
phous solid that is subjected to off-normal incidence ion
bombardment. We choose stationary coordinate axes~x,y,z!
with the unit vectorẑ normal to the surface. Let the unit
vector along the ion beam direction of incidence be2ê, and
let the polar and azimuthal angles ofê be u andf, respec-
tively. The angle of incidenceu is nonzero and, to begin, we
setf50. Finally, leth(x,y,t) denote the height of the inter-
face above the point (x,y) in the x-y plane at timet. Natu-
rally, h(x,y,t)5h02v0t, whereh0 is the initial height of the
interface andv05v0(u) is the speed of the surface while the
solid is being eroded.

A real surface is not perfectly flat initially, and this has a
profound effect on the time evolution of the surface. Let
u(x,y,t)[h(x,y,t)2h01v0t be the deviation of the surface
height away from the perfectly flat surface. We assume that
the effects of viscous flow are negligibly small and for the
moment omit the effect of shot noise. The equation of mo-
tion for u is then

ut5v08ux1m1uxx1m2uyy2B¹2¹2u1
l1

2
ux
21

l2

2
uy
2,

~1!

whereut[]u/]t, ux[]u/]x, and so forth@1,8#. Here¹2

5]2/]x21]2/]y2, v08[(dv0 /du)uu5u0
, m1 , m2 , l1 and

l2 are constants, andB is the surface self-diffusivity. In Eq.
~1!, the first term on the right-hand side accounts for the
angular dependence of the sputter yield, the second and third
terms arise because the sputter yield depends on the surface’s
curvature@1#, and the fourth term accounts for the effect of
surface self-diffusion@22#. The final two terms make Eq.~1!
nonlinear and have an important effect once the surface
width has become sufficiently large. Equation~1! is the an-
isotropic Kuramoto-Sivashinsky equation@9,23#.

If the azimuthal anglef is nonzero, we consider a rotated
coordinate system (X,Y,Z) in which ê lies in theX-Z plane.
Specifically,

X5x cosf1y sinf, ~2a!

Y52x sinf1y cosf, ~2b!

Z5z. ~2c!

Equation~1! then continues to hold, but withx, y, and z
replaced byX, Y, andZ. Transforming this equation to the
original frame of reference (x,y,z), we obtain

ut5mav¹
2u2B¹2¹2u1 1

2lav~¹u!2

1v08~ux cosf1uy sin f!1 1
2Dm cos~2f!~uxx2uyy!

1Dm sin~2f!uxy1
1
4Dl cos~2f!~ux

22uy
2!

1 1
2Dl sin~2f!uxuy , ~3!

where mav[(m11m2), lav[
1
2(l11l2), Dm[m12m2 ,

andDl[l12l2 .
We now turn to the effect of rotating the sample about the

z axis with a constant angular velocityv during ion bom-
bardment. This is equivalent to rotating the ion beam and
holding the sample fixed. We shall adopt the latter viewpoint
because it turns out to be simpler. Whenv is small, ripples
begin to form after a time. The orientation of these ripples
depends on the azimuthal anglef. As the beam rotates, the
ripple wave vector rotates along with it. This is the only
effect of rotating the beam whenv is small.

Now consider the opposite limit in which the ion beam is
rotated rapidly. Whenv is large, it is as if the solid were
simultaneously bombarded from all azimuthal anglesf.
Thus we can obtain an approximate equation of motion by
averaging Eq.~3! over the range 0<f<2p. This gives

ut5mav¹
2u2B¹2¹2u1 1

2lav~¹u!2. ~4!

When isv large, and when is it small? When the beam is
not rotated, the time needed for the ripple amplitude to be-
come appreciable is proportional toB/mav

2 @1#. Thus, when
v!mav

2 /B, the orientation of the ripples will slowly rotate.
Conversely, Eq.~4! applies whenv@mav

2 /B. Ripple topo-
graphies are never observed at the rotation rates used in
SIMS or AES and so we will assume thatv@mav

2 /B for the
remainder of the paper.

The time evolution of the interface is qualitatively differ-
ent for positive and negativemav. Consider first the case in
which mav is negative. Equation~4! is then the isotropic
Kuramoto-Sivashinsky equation@17,18#, which we will refer
to as simply the KS equation. The KS equation has previ-
ously been used to model diffusive instabilities of chemical
waves@17# and wrinkled flame fronts@18#. The linearized
KS equation has a band of unstable modes with wave vector
smaller than a threshold value. The most remarkable feature
of Eq. ~4! is that the nonlinear term prevents the runaway
growth of the unstable modes, and, as a result, the surface
gradient remains bounded. The interplay between the linear
instability and the nonlinear coupling between the unstable
modes leads to a state of spatiotemporal chaos@24#.

When fully developed, the surface topography has a cel-
lular structure. Iflav is positive, each cell is a rounded pro-
trusion on the surface, while the cells are basins iflav,0
~see, for example, Ref.@25#!. Note that the cellular structure
of the surface is neither periodic in space nor in time—the
cells appear and disappear chaotically as time passes.

We can readily determine the typical dimensions of these
cellular structures by introducing the dimensionless variables

x̃5S mav

B D 1/2x,
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ỹ5S mav

B D 1/2y,
ũ5S lav

mav
Du,

t̃5S mav
2

B D t,
Equation~4! now becomes

ũ t̃ 5¹̃2ũ2¹̃2¹̃2ũ1 1
2 ~¹̃ũ!2. ~5!

We conclude that the mean width of the cells^w& is propor-
tional to (B/mav)

1/2, and that their average height scales as
mav/lav.

Bothmav andlav are proportional to the ion fluxf and are
independent of the sample temperatureT. Therefore, the
mean cell height does not depend onf or T. The variation of
the mean cell widtĥw& with temperature and flux is more
complex.^w& is proportional to the ripple wavelengthl ob-
served in the absence of sample rotation@1,26#. Thus, when
the ion flux f is relatively low and the temperatureT is
relatively high, the mean cell width varies aŝw&
;( f T)21/2 exp(2DE/2kBT), whereDE is the activation en-
ergy for surface self-diffusion andkB is Boltzmann’s con-
stant @1#. In the opposite limit of high fluxes and low tem-
peratures, radiation-induced surface self-diffusion becomes
important @27#. The surface self-diffusivityB includes the
effects of both thermally activated and ion-induced surface
self-diffusion.B grows linearly with f , since the frequency
of atomic jumps induced by the impinging ions is propor-
tional to f . Thus,Beff5B01a f , whereB0 is the thermally
activated surface self-diffusivity anda is a positive constant.
Sincemav is proportional tof , when the flux is high and the
temperature is low, botĥw& and l are independent off .
Also, note that since the energy of the ions is typically much
larger thankBT, the temperature dependence of the coeffi-
cient a should be negligible. Thus, in the high-flux, low-
temperature regime,^w& andl should be nearly independent
of temperature as well.

Partial corroboration for this picture comes from experi-
mental results on the wavelengthl in the absence of sample
rotation. In their experiments on the off-normal incidence
erosion of GaAs, MacLarenet al. found that if the tempera-
ture is reduced while the ion flux is held fixed,l crosses over
from its high-temperature Arrhenius behavior to a roughly
constant value at low temperatures@3#.

We now turn our attention from the structure of the sur-
face at short length scales to its long-wavelength scaling
properties. It is now well established that in 111 dimensions
the scaling behavior of the KS equation is the same as that of
the KPZ equation@28–31#. There is evidence that KS and
KPZ equations are in the same universality class in 211
dimensions as well@25#, but there is not yet a consensus on
this issue@32#. In reality, Eq.~4! is not quite complete as it
stands—a shot noise term ought to appear on the right-hand
side of this equation. Cuerno and Lauritsen have recently
argued that in 211 dimensions the noisy KS equation is in
the same universality class as the KPZ equation, but they

concede that their argument is not conclusive@33#. The scal-
ing behavior of the surface whenmav,0 is therefore still an
open question.

Now let us consider the case in whichmav is positive. In
this case, the surface is stable against small perturbations
away from a perfectly flat state, and as a result, the effect of
surface self-diffusion can be neglected.~In contrast, the sur-
face is unstable whenmav,0, and the effect of surface self-
diffusion is important in determining the length scale of the
short-range structure.! We therefore setB to zero in Eq.~4!.
We will also take the effect of shot noise into account by
adding a noise termh(x,y,t) to the right-hand side of Eq.
~4!. Explicitly,

ut5mav¹
2u1 1

2lav~¹u!21h, ~6!

where h(x,y,t) has a Gaussian distribution with
^h(x,y,t)&50 and

^h~x,y,t !h~x8,y8,t8!&52Dd~x2x8!d~y2y8!d~ t2t8!.

HereD is a constant.
Equation ~6! is the KPZ equation in 211 dimensions

@19,20#. It therefore appears that the scaling behavior of the
sample surface is in the same universality class as the KPZ
equation in 211 dimensions. Thus the interface widthw of a
sample of linear dimensionL follows the scaling form

w~L,t !5La f S t

Lz D , ~7!

where f (x);xb for x!1, f (x) approaches a constant x→`,
andz5a/b. The dynamic critical exponentsa andz satisfy
the scaling relationa1z52. The exact value ofz is not
known in 211 dimensions, but numerical estimates typically
yield values in the neighborhood of 1.7@20#.

Let us now suppose that the sample surface is very rough
initially. If this is the case, then the effects of shot noise may
be neglected for all but the longest times. Thus, we shall
drop the noise term from the KPZ equation~6!, yielding the
deterministic KPZ equation. The scaling behavior of the sur-
face is again governed by Eq.~7!, although the values ofa
and z are different. Let us suppose that the initial width of
the surface scales asLa0. Using scaling arguments, Krug and
Spohn found that

z5min~2,22a0! ~8!

and thata522z @34#. These predictions agree well with nu-
merical integrations of the deterministic KPZ equation in
111 dimensions@35#, but have not yet been tested in 211
dimensions.

The short-wavelength structure of the surfaces generated
by the deterministic KPZ equation have also been studied
@19,34#. For sufficiently long times, the solution is composed
of a patchwork of paraboloids of revolution of the form
hn(rW,t)5an2urW2rWnu2/(2lavt) joined together by disconti-
nuities in ¹h. The lateral dimensions of these paraboloids
grow ast1/z.

It is interesting to compare these predictions with the ex-
perimental results of Barna, Barna, and Zalar@21#, who sub-
jected multilayer Ni-Cr films to off-normal incidence ion
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bombardment during sample rotation. The surfaces of their
samples were quite rough initially. After sputtering had pro-
ceeded for some time, they found that the surfaces of their
samples were composed of a patchwork of bulges, and that
the lateral dimensions of these bulges grew in the course of
time. It therefore seems likely that to a good approximation
the time evolution of the sample surface in their experiments
was governed by the deterministic KPZ equation. The value
of a0 for a conventionally prepared sample surface is of
course zero. Equation~8! then givesz52, and so the theory
predicts that the bulge width grows ast1/2. As a result, the
total number of cells on the surfaceN should decay ast21.
Barna, Barna, and Zalar provide a sequence of photographs
of the sample surface at several different times, andN is
clearly decreasing with time. However, the resolution of

these photographs do not permit a quantitative check of the
predictionN;t21.

Topographies similar to those of Barna, Barna, and Zalar
were first observed more than three decades ago in experi-
ments on the sputtering of a rotating glass sample@36# and
yet systematic experimental work has not yet been done.
Hopefully, quantitative experiments will be done in the near
future which will permit a detailed test of the theory. It
would also be quite interesting to see whether cellular topog-
raphies of the Kuromoto-Sivashinsky type occur in some in-
stances, as suggested by the theory. If so, a detailed experi-
mental study of rotating, sputtered surfaces might resolve the
controversy over the scaling behavior of the Kuramoto-
Sivashinsky equation in 211 dimensions.

I would like to thank H. Boularot, E.-H. Cirlin, R. E.
Eykholt, and M. P. Gelfand for helpful discussions.
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and M. Drechsler, Surf. Sci.75, 342 ~1978!.

@28# V. Yakhot, Phys. Rev. A24, 642 ~1981!.
@29# S. Zaleski, Physica D34, 427 ~1989!.
@30# K. Sneppen, J. Krug, M. H. Hansen, C. Jayaprakash, and T.

Bohr, Phys. Rev. A46, R7351~1992!.
@31# F. Hayot, C. Jayaprakash, and Ch. Josserand, Phys. Rev. E47,

911 ~1993!.
@32# I. Procaccia, M. H. Jensen, V. S. L’vov, K. Sneppen, and R.

Zeitak, Phys. Rev. A46, 3220 ~1992!; V. S. L’vov and I.
Procaccia, Phys. Rev. Lett.72, 307 ~1994!; C. Jayaprakash, F.
Hayot, and R. Pandit,ibid. 72, 308 ~1994!.

@33# R. Cuerno and K. B. Lauritsen, Phys. Rev. E52, 4853~1995!.
@34# J. Krug and H. Spohn, Phys. Rev. A38, 4271~1988!.
@35# J. G. Amar and F. Family, Phys. Rev. E47, 1595~1993!.
@36# M. Navez, C. Sella, and D. Chaperot, C. R. Acad. Sci.254,

240 ~1962!; and in Ionic Bombardment: Theory and Applica-
tions, edited by J. J. Trillat~Gordon and Breach, New York,
1964!.

6152 54R. MARK BRADLEY


