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Dynamic scaling of ion-sputtered rotating surfaces
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Surfaces eroded by off-normal incidence ion bombardment often have a rippled topography, and this is
undesirable in a number of applications. Sample rotation during sputtering inhibits or prevents surface rough-
ening and is widely used in precision depth profiling. In this paper, | study the surface roughening of a sample
that is simultaneously rotated and sputtered in the limit in which viscous flow can be neglected. | find that the
structure of the surface depends on the sign of a parameter characterizing the curvature dependence of the
sputter yield,u,, . For >0, the asymptotic scaling behavior of the surface is in the same universality class
as the Kardar-Parisi-Zhang equation it 2dimensions. At long times the surface is composed of a patchwork
of paraboloids of revolution whose mean lateral dimension grows algebraically in time, a topography quite
reminiscent of those observed experimentally. In contrast, the interface has a chaotic cellular structure de-
scribed by the isotropic Kuramoto-Sivashinsky equation.if<0. The mean cell width is constant in time in
this case[S1063-651X96)08812-5

PACS numbe(s): 64.60.Ht, 61.80.Az, 79.20.Rf

Off-normal incidence ion bombardment often producesobserved that if the sample is at first stationary and ripples
periodic height modulations on the surface of an amorphouare formed, subsequent rotation during erosion can lead to
solid [1-4]. For incidence angle8 less than a critical angle the production of a smooth surfa¢é4]. Sample rotation
0. from the normal, the wave vector of the modulations isdoes not always suppress surface roughening, however. In
parallel to the component of the ion beam in the surfacesome instances, the sample roughens while it is simulta-
plane. The wave vector is perpendicular to this componenteously eroded and rotated, albeit at a slower rate than it
for incidence angles close to grazing. It is now well estab-does when it is eroded without being rotafdd,15.
lished that if the incident ions do not react chemically with  Although Zalar rotation is widely used in sample analysis
the solid, these surface modulations form as a result of thand is even applied in commercially available depth profiling
curvature dependence of the sputter yigle-3,5-17. systems, an understanding of its effectiveness has been lack-

In practice, the ripples are not completely coherent being. Recently, Bradley and Cirlin advanced a theory that ex-
cause of the effects of shot noise. The topography is thergsjains why sample rotation reduces or eliminates surface
fore dlsordered_ at long wavelengths. Moreover, as the am_p"r'oughening during depth profilingL6]. When the sample is
tude of the ripples becomes appreciable, nonlinearitiegyated, the smoothing effects of viscous flow and surface

become increasingly important. Recently, considerable efforé If-diffusion can prevail over the roughening effect of the

has been devoted to understanding the scaling behavior ) ; )
the surface, which is influenced by both the noise and th%ﬁrvature dependent sputter yield and generate a smooth sur

nonlinearitied8—10]. The dynamics of the interface are gov- face. The theory also accounts for the observations of Cirlin

. . . . ; et al. [14] mentioned above.
rn he noi nisotropic Kuramoto-Sivashinsk - . . .
erned by the noisy, anisotropic Kuramoto-Sivashinsky equa The object of the present paper is to elucidate the nature

tion, which displays several different types of complex scal- ) .
ing behavior whose precise nature remains to be elucidateﬂ).f the surfacg roughening that ;ometlmes occurs even yv’hen
Formation of surface ripples is problematic in a variety of € Sample is rotated. According to Bradley and Cirlin’s
applications, including secondary ion mass spectroscop}’€0ry: the surface roughens during concurrent ion sputtering
(SIMS), Auger electron spectroscofAES), and ion mill- and sample rotation if the viscosity of the sample is too high.
ing. SIMS is one of the most widely used techniques forWe will study the surface roughening in this high-viscosity
dopant profiling of semiconductors, while AES is an impor-regime. For simplicity, the viscosity will be taken to be large
tant tool in the structural characterization of multilayers. In aeénough that the effects of viscous flow can be neglected al-
typical SIMS or AES apparatus, the primary ions are inci-together. | find that the structure of the surface depends on
dent at an angl#+0. Thus, as sputtering proceeds, ripplesthe sign of a parameter characterizing the curvature depen-

can be formed, and this leads to rapid degradation of theence of the sputter yielgy,, . If «,,<O0, the interface has a
depth resolution. This is particularly problematic when SIMSchaotic cellular structure which is described by the much-
or AES is used in conjunction with ion sputtering for depth studied isotropic Kuramoto-Sivashinsky (KS) equation
profiling of modern thin film materials and devicgkl]. [17,18. We can therefore simply refer to the existing litera-
Zalar first demonstrated that this problem can be overture to learn a great deal about the nature of the surface
come by rotating the sample about its surface normal as theughening in this case—for example, the mean cell width is
depth profiling proceed$12]. Zalar rotation has subse- constantin time. Whep,, is positive, on the other hand, the
guently been used by many other groups, who found that itong-time, long-wavelength scaling behavior of the surface is
many cases, the surface remains remarkably smooth as thiee same as that of the Kardar-Parisi-Zh&&Z) equation
solid is eroded 13]. Moreover, Cirlin and co-workers have in 2+1 dimensiong19,20. Once we have arrived at this
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conclusion, the vast literature on the KPZ equation allows usy,= ., V2u—BV2V2u+ 3\ ,(Vu)?

to describe the scaling properties of the interface Q>0 ) _ .

quite satisfactorily. At long times, the surface is composed of ~ +vg(Ux COS¢+Uy SiN ¢) +3Au COL2¢h)(Uxx— Uyy)
a patchwork of paraboloids of revolution whose mean lateral . 1 2 2

dimensions grow as*? whent is large. The dynamic critical +Ap Sin2¢)uxy+ AN cod2¢) (U —uy)

exponentz has an asymptotic \_/a_ll_Je of roughly 1.7. How_ever, +1AN sin(2¢)u,u, , 3)

if the surface is very rough initially, there is a long-lived

transient regime in whiclz=2. This prediction is in quali- _ . _

tative agreement with the experimental results of BarnaVhere wa=(u1tuo), Aa=2(A1+X2), Au=p,—pa,
Barna, and Zalaf21]. and AN=A3—\;. ,

Let us begin by considering a flat surface of an amor- We now turn to the effect of rotating the s_ample about the
phous solid that is subjected to off-normal incidence ionZ 8XiS With & constant angular velocity during ion bom-
bombardment. We choose stationary coordinate &xgsz) bard.ment. This is e_quwalent to rotating the ion be_:am and
with the unit vectorz normal to the surface. Let the unit h0lding the sample fixed. We shall adopt the latter viewpoint
vector along the ion beam direction of incidence-be, and ~ Pecause it turns out to be simpler. Wheris small, ripples
let the polar and azimuthal angles ®fbe ¢ and &, respec- begin to form after_a time. The orientation of these ripples
tively. The angle of incidencé is nonzero and, to begin, we 9€Pends on the azimuthal angie As the beam rotates, the

set$=0. Finally, leth(x,y,t) denote the height of the inter- ripple wave vector rotates along. with it. This is the only
face above the poinix(y) in the x-y plane at timet. Natu-  €ffect of rotating the beam when is small. . .
rally, h(x,y,t) =ho—v,t, whereh, is the initial height of the Now consider the opposite limit in which the ion beam is

interface and,=uv,(4) is the speed of the surface while the "otated rapidly. Whenw is large, it is as if the solid were
solid is being eroded. simultaneously bombarded from all azimuthal anglés

A real surface is not perfectly flat initially, and this has a 1NUS We can obtain an approximate equation of motion by
profound effect on the time evolution of the surface. Let2Veraging Eq(3) over the range €4<2m. This gives
u(x,y,t)=h(x,y,t) —hg+uvyt be the deviation of the surface
height away from the perfectly flat surface. We assume that U= o V2U—BV2V2u+ 3\ (Vu)2. 4
the effects of viscous flow are negligibly small and for the
moment omit the effect of shot noise. The equation of mo-

. . When isw large, and when is it small? When the beam is
tion for u is then

not rotated, the time needed for the ripple amplitude to be-
come appreciable is proportional B 2, [1]. Thus, when
LY w<,u,§\/B, the orientation of the ripples will slowly rotate.
ux+? Uy Conversely, Eq(4) applies whenw>,u§\/B. Ripple topo-
(1)  graphies are never observed at the rotation rates used in

SIMS or AES and so we will assume that> w2 /B for the
whereu,=au/dt, u,=du/dx, and so forth[1,8]. Herev2  remainder of the paper. _ o _
= 321 9x%+ 3?1 ay?, uéz(dv0/d6)|9:00, K1, M2, Ny and The time evolution of the interface is qualitatively differ-

: e ent for positive and negative,,. Consider first the case in
\, are constants, anB is the surface self-diffusivity. In Eq. which ,up is negative gEqu)?a?}/orM) is then the isotropic
av N

(1), the first term on the right-hand side accounts for theléuramoto—Sivashinsky equatida7,18, which we will refer

angular plependence of the sputter yield, the second and thi{0 as simply the KS equation. The KS equation has previ-
terms arise because the sputter yield depends on the surfac%asly been used to model diffusive instabilities of chemical
curvature[1], gnd Fhe fourth te_rm accounts for the effect of waves[17] and wrinkled flame front§18]. The linearized
surface self-diffusiofi22]. The final two terms make Eql) KS equation has a band of unstable modes with wave vector

nonlinear and have an important effect once the surface
, - N Smaller than a threshold value. The most remarkable feature
width has become sulfficiently large. Equati@ is the an-

isotropic Kuramoto-Sivashinsky equatio®, 23 of Eq. (4) is that the nonlinear term prevents the runaway
If the azimuthal angleb is nonzero, we é:onsider a rotated growth of the unstable modes, and, as a result, the surface

. . TN i gradient remains bounded. The interplay between the linear
gc;%rg;ir\cegﬁysystem,Y,Z) in which e lies in theX-Z plane. instability and the nonlinear coupling between the unstable

modes leads to a state of spatiotemporal chad$
When fully developed, the surface topography has a cel-
X=X cosp+Yy sing, (28 lular structure. Ifn,, is positive, each cell is a rounded pro-
trusion on the surface, while the cells are basinaj<0
(see, for example, Ref25]). Note that the cellular structure
of the surface is neither periodic in space nor in time—the
cells appear and disappear chaotically as time passes.
Z=7. (20) We can readily determine the typical dimensions of these
cellular structures by introducing the dimensionless variables

A

Up= 0 QU+ s 1ley+ pollyy—BV2V2u+ >

Y=—Xsing+y cosp, (2b)

Equation(1) then continues to hold, but witk, y, andz o
replaced byX, Y, andZ. Transforming this equation to the = Hav
original frame of referencex(y,z), we obtain B '
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12 concede that their argument is not conclugi®8|. The scal-
) \z ing behavior of the surface wheu, <0 is therefore still an
open question.
N Now let us consider the case in whigh, is positive. In
u:< Zav )u, this case, the surface is stable against small perturbations
away from a perfectly flat state, and as a result, the effect of
surface self-diffusion can be neglectébh contrast, the sur-
~ [ ma face is unstable whep,,<0, and the effect of surface self-
t= ' diffusion is important in determining the length scale of the
short-range structureWe therefore seB to zero in Eq.(4).

Equation(4) now becomes We will also take the effect of shot noise into account by
adding a noise termy(x,y,t) to the right-hand side of Eg.
’JTZ%"Z’J_%Z%ZG_’_%(%H)Z. (5) (4). Explicitly,
ut:Iu“avVZLH_ %Aav(VU)Z_F 7, (6)

We conclude that the mean width of the céllg is propor-
tional to (B/u4,)"% and that their average height scales as,jere 706y 1)
MaylNay. t :,O’ d

Both u,, and\,, are proportional to the ion fluk and are (7(x.y,1))=0 an
independent of the sample temperatdre Therefore, the XV 7(x' V' ' )NV=2D8(x—Xx")S(v—v')S(t—t).
mean cell height does not dependfoar T. The variation of (ny.Om(x"y" 1) { Joly=yDet=t)
the mean cell widtiw) with temperature and flux is more HereD is a constant.

complex.(w) is proportional to the ripple wavelengiob- Equation (6) is the KPZ equation in 21 dimensions
served in the absence of sample rotafidr26]. Thus, when  [19 20. It therefore appears that the scaling behavior of the
the ion flux f is relatively low and the temperatufe is  sample surface is in the same universality class as the KPZ
relatively high, the mean cell width varies aév)  equation in 2-1 dimensions. Thus the interface widthof a

~(fT) "2 exp(~AE/2kgT), whereAE is the activation en-  sample of linear dimensioh follows the scaling form
ergy for surface self-diffusion anllg is Boltzmann’s con-

stant[1]. In the opposite limit of high fluxes and low tem-

peratures, radiation-induced surface self-diffusion becomes W(L’t):Laf( L
important[27]. The surface self-diffusivityB includes the

effects of both thermally activated and ion-induced surfaceyheref(x)~x” for x<1, f(x) approaches a constantxe,

self-diffusion. B grows "nearly Wlthf, since the frequency andz= CY/,B The dynamic critical exponents andz Satisfy

of atomic jumps induced by the impinging ions is propor-the scaling relatione+z=2. The exact value of is not
tional to f. Thus,Bey=Bo+af, whereB, is the thermally  known in 2+1 dimensions, but numerical estimates typically
activated surface self-diffusivity aralis a positive constant. yjeld values in the neighborhood of 1[Z0].

Sincepu,, is proportional tof, when the flux is high and the et us now suppose that the sample surface is very rough
temperature is low, botfw) and\ are independent of. jnjtially. If this is the case, then the effects of shot noise may
Also, note that since the energy of the ions is typically muchpe neglected for all but the longest times. Thus, we shall
larger thankgT, the temperature dependence of the coeffi-qrop the noise term from the KPZ equatit®), yielding the
cient a should be negligible. Thus, in the high-flux, low- deterministic KPZ equation. The scaling behavior of the sur-
temperature regimgw) and\ should be nearly independent face is again governed by E(f), although the values of

of temperature as well. andz are different. Let us suppose that the initial width of

Partial corroboration for this picture comes from experi-the surface scales &£°. Using scaling arguments, Krug and
mental results on the wavelengthin the absence of sample Spohn found that

rotation. In their experiments on the off-normal incidence

erosion of GaAs, MacLareet al. found that if the tempera- z=min(2,2— ayq) (8

ture is reduced while the ion flux is held fixedcrosses over

from its high-temperature Arrhenius behavior to a roughlyand thate=2—2z [34]. These predictions agree well with nu-

constant value at low temperatures. merical integrations of the deterministic KPZ equation in
We now turn our attention from the structure of the sur-1+1 dimensiong 35|, but have not yet been tested in-2

face at short length scales to its long-wavelength scalinglimensions.

properties. It is now well established that ir-1 dimensions The short-wavelength structure of the surfaces generated

the scaling behavior of the KS equation is the same as that dfy the deterministic KPZ equation have also been studied

the KPZ equatiorf28—31]. There is evidence that KS and [19,34. For sufficiently long times, the solution is composed

KPZ equations are in the same universality class #112 of a patchwork of paraboloids of revolution of the form

dimensions as well25], but there is not yet a consensus on h,(F,t)=a,— |F—,|%/(2\4t) joined together by disconti-

this issu€[32]. In reality, Eq.(4) is not quite complete as it nuities in Vh. The lateral dimensions of these paraboloids

stands—a shot noise term ought to appear on the right-hargtow ast*?2,

side of this equation. Cuerno and Lauritsen have recently It is interesting to compare these predictions with the ex-

argued that in 21 dimensions the noisy KS equation is in perimental results of Barna, Barna, and Z4Ri], who sub-

the same universality class as the KPZ equation, but thejected multilayer Ni-Cr films to off-normal incidence ion

has a Gaussian distribution with

: Y
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bombardment during sample rotation. The surfaces of theithese photographs do not permit a quantitative check of the
samples were quite rough initially. After sputtering had pro-predictionN~t™*.

ceeded for some time, they found that the surfaces of their ToPographies similar to those of Barna, Barna, and Zalar
ere first observed more than three decades ago in experi-

e laeral dmension of these bulges grew n the course e o7 e SPulering of & rolatng gass sarfptond
time. It therefore seems likely that to a good approximationygpefully, quantitative experiments will be done in the near
the time evolution of the sample surface in their experimentsuture which will permit a detailed test of the theory. It
was governed by the deterministic KPZ equation. The valugvould also be quite interesting to see whether cellular topog-
of ay for a conventionally prepared sample surface is ofraphies of the Kuromoto-Sivashinsky type occur in some in-
course zero. Equatiof8) then givesz=2, and so the theory stances, as suggested by the theory. If so, a detailed experi-
predicts that the bulge width grows 8 As a result, the mental study of rotating, sputtered surfaces might resolve the
total number of cells on the surfade should decay as L controversy over .the. scaling beh.avior of the Kuramoto-
Barna, Barna, and Zalar provide a sequence of photograpialvashinsky equation in21 dimensions.

of the sample surface at several different times, ahds | would like to thank H. Boularot, E.-H. Cirlin, R. E.
clearly decreasing with time. However, the resolution ofEykholt, and M. P. Gelfand for helpful discussions.
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